výrobce: USN
obsah proteinů: 71%
771 | Kč |
CFM Instant Whey 80 Whey 100! 2270g dozaProteinové nápoje, bílkoviny s obsahem 66-75% proteinů, bílkovin nad 2000g
|
||||||||||||
|
||||||||||||
ukázat dárky
Dárky a počet kusů si následně vyberete až po vložení produktu do košíku.
|
||||||||||||
Chci ještě lepší cenu
|
ČOKOLÁDA KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1671 kJ (20%*) | 501,3 kJ (6%*) | |
Energetická hodnota | 398 kCal (20%*) | 119,4 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,8 g (3%*) | 2,04 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5 g (6%*) | 1,5 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,2 g (12%*) | 2,46 g (4%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,3 g (7%*) | 0,39 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2,4 g | 0,72 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,32 g (5%*) | 0,1 |
COOKIES | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1702 kJ (20%*) | 510,6 kJ (6%*) | |
Energetická hodnota | 405 kCal (20%*) | 121,5 kCal (6%*) | |
Bílkoviny - proteiny | 76 g (152%*) | 22,8 g (46%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 5,9 g (2%*) | 1,77 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,1 g (6%*) | 1,53 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,5 g (12%*) | 2,55 g (4%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,4 g (7%*) | 0,42 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,1 g | 0,33 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,38 g (6%*) | 0,11 |
ČOKOLÁDA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1670 kJ (20%*) | 501 kJ (6%*) | |
Energetická hodnota | 398 kCal (20%*) | 119,4 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,3 g (2%*) | 1,89 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5 g (6%*) | 1,5 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,3 g (12%*) | 2,49 g (4%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,3 g (7%*) | 0,39 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2,4 g | 0,72 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,32 g (5%*) | 0,1 |
JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1687 kJ (20%*) | 506,1 kJ (6%*) | |
Energetická hodnota | 402 kCal (20%*) | 120,6 kCal (6%*) | |
Bílkoviny - proteiny | 75 g (150%*) | 22,5 g (45%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,9 g (3%*) | 2,07 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,8 g (6%*) | 1,74 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,1 g (12%*) | 2,43 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,1 g (6%*) | 0,33 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,1 g | 0,33 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,33 g (6%*) | 0,1 |
BORŮVKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1682 kJ (20%*) | 504,6 kJ (6%*) | |
Energetická hodnota | 400 kCal (20%*) | 120 kCal (6%*) | |
Bílkoviny - proteiny | 75 g (150%*) | 22,5 g (45%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,1 g (2%*) | 1,83 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,6 g (6%*) | 1,68 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,1 g (12%*) | 2,43 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,1 g (6%*) | 0,33 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,33 g (6%*) | 0,1 |
BÍLÝ JOGURT | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1682 kJ (20%*) | 504,6 kJ (6%*) | |
Energetická hodnota | 400 kCal (20%*) | 120 kCal (6%*) | |
Bílkoviny - proteiny | 75 g (150%*) | 22,5 g (45%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,1 g (2%*) | 1,83 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,6 g (6%*) | 1,68 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,1 g (12%*) | 2,43 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,1 g (6%*) | 0,33 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,33 g (6%*) | 0,1 |
BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1691 kJ (20%*) | 507,3 kJ (6%*) | |
Energetická hodnota | 403 kCal (20%*) | 120,9 kCal (6%*) | |
Bílkoviny - proteiny | 75 g (150%*) | 22,5 g (45%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,7 g (3%*) | 2,01 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,5 g (6%*) | 1,65 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,1 g (12%*) | 2,43 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,1 g (6%*) | 0,33 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,3 g | 0,39 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,33 g (6%*) | 0,1 |
VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1692 kJ (20%*) | 507,6 kJ (6%*) | |
Energetická hodnota | 403 kCal (20%*) | 120,9 kCal (6%*) | |
Bílkoviny - proteiny | 76 g (152%*) | 22,8 g (46%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 5,6 g (2%*) | 1,68 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,1 g (6%*) | 1,53 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 8,3 g (12%*) | 2,49 g (4%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 1,1 g (6%*) | 0,33 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,1 g | 0,33 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,37 g (6%*) | 0,11 |
LEDOVÁ KÁVA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1624 kJ (19%*) | 487,2 kJ (6%*) | |
Energetická hodnota | 387 kCal (19%*) | 116,1 kCal (6%*) | |
Bílkoviny - proteiny | 75 g (150%*) | 22,5 g (45%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,6 g (3%*) | 1,98 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 4,6 g (5%*) | 1,38 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 6,7 g (10%*) | 2,01 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 2,6 g (13%*) | 0,78 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,1 g | 0,33 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,09 g (2%*) | 0,03 |
JAHODA-BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1616 kJ (19%*) | 484,8 kJ (6%*) | |
Energetická hodnota | 385 kCal (19%*) | 115,5 kCal (6%*) | |
Bílkoviny - proteiny | 74 g (148%*) | 22,2 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,3 g (3%*) | 2,19 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,3 g (6%*) | 1,59 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 6,6 g (9%*) | 1,98 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 2,5 g (13%*) | 0,75 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,2 g | 0,36 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,09 g (2%*) | 0,03 |
KARAMEL | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1619 kJ (19%*) | 485,7 kJ (6%*) | |
Energetická hodnota | 386 kCal (19%*) | 115,8 kCal (6%*) | |
Bílkoviny - proteiny | 75 g (150%*) | 22,5 g (45%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 6,2 g (2%*) | 1,86 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 4,6 g (5%*) | 1,38 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 6,7 g (10%*) | 2,01 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 2,5 g (13%*) | 0,75 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,1 g | 0,33 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,09 g (2%*) | 0,03 |
KOKOSOVÉ MLÉKO | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1619 kJ (19%*) | 485,7 kJ (6%*) | |
Energetická hodnota | 385 kCal (19%*) | 115,5 kCal (6%*) | |
Bílkoviny - proteiny | 75 g (150%*) | 22,5 g (45%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 5,8 g (2%*) | 1,74 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 4,5 g (5%*) | 1,35 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 6,7 g (10%*) | 2,01 g (3%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 2,5 g (13%*) | 0,75 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,6 g | 0,48 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,09 g (2%*) | 0,03 |
ČOKOLÁDA KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7970 mg | 2391 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3624 mg | 1087,2 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1564 mg | 469,2 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1050 mg | 315 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2197 mg | 659,1 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13099 mg | 3929,7 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1234 mg | 370,2 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4616 mg | 1384,8 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7641 mg | 2292,3 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 3977 mg | 1193,1 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3335 mg | 1000,5 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4831 mg | 1449,3 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6914 mg | 2074,2 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1584 mg | 475,2 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1017 mg | 305,1 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1899 mg | 569,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4282 mg | 1284,6 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
COOKIES | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8335 mg | 2500,5 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3789 mg | 1136,7 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1591 mg | 477,3 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1667 mg | 500,1 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1061 mg | 318,3 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2273 mg | 681,9 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13715 mg | 4114,5 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1288 mg | 386,4 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4850 mg | 1455 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 8032 mg | 2409,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4168 mg | 1250,4 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3486 mg | 1045,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5077 mg | 1523,1 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7274 mg | 2182,2 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1667 mg | 500,1 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1061 mg | 318,3 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1970 mg | 591 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4471 mg | 1341,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
ČOKOLÁDA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8085 mg | 2425,5 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3676 mg | 1102,8 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1577 mg | 473,1 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1610 mg | 483 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1058 mg | 317,4 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2224 mg | 667,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13292 mg | 3987,6 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1251 mg | 375,3 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4687 mg | 1406,1 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7760 mg | 2328 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4036 mg | 1210,8 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3383 mg | 1014,9 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4906 mg | 1471,8 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7024 mg | 2107,2 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1609 mg | 482,7 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1031 mg | 309,3 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1924 mg | 577,2 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4343 mg | 1302,9 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8171 mg | 2451,3 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3714 mg | 1114,2 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1560 mg | 468 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1634 mg | 490,2 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1040 mg | 312 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2229 mg | 668,7 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13446 mg | 4033,8 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1263 mg | 378,9 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4754 mg | 1426,2 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7874 mg | 2362,2 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4086 mg | 1225,8 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3417 mg | 1025,1 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4977 mg | 1493,1 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7131 mg | 2139,3 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1634 mg | 490,2 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1040 mg | 312 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1931 mg | 579,3 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4383 mg | 1314,9 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
BORŮVKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8248 mg | 2474,4 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3749 mg | 1124,7 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1575 mg | 472,5 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1650 mg | 495 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1050 mg | 315 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2250 mg | 675 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13572 mg | 4071,6 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1275 mg | 382,5 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4799 mg | 1439,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7948 mg | 2384,4 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4124 mg | 1237,2 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3449 mg | 1034,7 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5024 mg | 1507,2 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7198 mg | 2159,4 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1650 mg | 495 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1050 mg | 315 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1950 mg | 585 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4424 mg | 1327,2 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
BÍLÝ JOGURT | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8248 mg | 2474,4 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3749 mg | 1124,7 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1575 mg | 472,5 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1650 mg | 495 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1050 mg | 315 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2250 mg | 675 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13572 mg | 4071,6 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1275 mg | 382,5 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4799 mg | 1439,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7948 mg | 2384,4 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4124 mg | 1237,2 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3449 mg | 1034,7 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5024 mg | 1507,2 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7198 mg | 2159,4 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1650 mg | 495 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1050 mg | 315 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1950 mg | 585 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4424 mg | 1327,2 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8258 mg | 2477,4 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3753 mg | 1125,9 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1576 mg | 472,8 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1652 mg | 495,6 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1051 mg | 315,3 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2252 mg | 675,6 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13587 mg | 4076,1 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1276 mg | 382,8 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4804 mg | 1441,2 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7957 mg | 2387,1 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4129 mg | 1238,7 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3453 mg | 1035,9 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5030 mg | 1509 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7207 mg | 2162,1 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1652 mg | 495,6 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1051 mg | 315,3 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1952 mg | 585,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4429 mg | 1328,7 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8386 mg | 2515,8 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3812 mg | 1143,6 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1601 mg | 480,3 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1677 mg | 503,1 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1067 mg | 320,1 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2287 mg | 686,1 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13799 mg | 4139,7 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1296 mg | 388,8 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4879 mg | 1463,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 8081 mg | 2424,3 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4193 mg | 1257,9 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3507 mg | 1052,1 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5108 mg | 1532,4 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7319 mg | 2195,7 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1677 mg | 503,1 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1067 mg | 320,1 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1982 mg | 594,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4498 mg | 1349,4 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
LEDOVÁ KÁVA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8170 mg | 2451 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3698 mg | 1109,4 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1610 mg | 483 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1641 mg | 492,3 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1112 mg | 333,6 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2258 mg | 677,4 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13694 mg | 4108,2 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1449 mg | 434,7 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4664 mg | 1399,2 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7881 mg | 2364,3 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4158 mg | 1247,4 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3512 mg | 1053,6 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5022 mg | 1506,6 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7057 mg | 2117,1 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1631 mg | 489,3 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1085 mg | 325,5 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1865 mg | 559,5 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4258 mg | 1277,4 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
JAHODA-BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8044 mg | 2413,2 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3641 mg | 1092,3 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1586 mg | 475,8 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1616 mg | 484,8 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1096 mg | 328,8 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2224 mg | 667,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13487 mg | 4046,1 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1429 mg | 428,7 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4591 mg | 1377,3 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7759 mg | 2327,7 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4095 mg | 1228,5 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3459 mg | 1037,7 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4946 mg | 1483,8 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6947 mg | 2084,1 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1606 mg | 481,8 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1069 mg | 320,7 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1836 mg | 550,8 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4191 mg | 1257,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
KARAMEL | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8187 mg | 2456,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3706 mg | 1111,8 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1613 mg | 483,9 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1644 mg | 493,2 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1114 mg | 334,2 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2263 mg | 678,9 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13722 mg | 4116,6 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1451 mg | 435,3 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4674 mg | 1402,2 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7897 mg | 2369,1 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4166 mg | 1249,8 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3519 mg | 1055,7 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5033 mg | 1509,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7072 mg | 2121,6 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1635 mg | 490,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1087 mg | 326,1 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1870 mg | 561 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4267 mg | 1280,1 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
KOKOSOVÉ MLÉKO | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 8205 mg | 2461,5 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
L-Alanin | 3714 mg | 1114,2 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1617 mg | 485,1 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1648 mg | 494,4 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Glycin | 1116 mg | 334,8 mg |
Aminokyselinové spektrum L-Glycin Aminokyselina - slouží k syntéze jiných aminokyselin, součástí hemoglobinu a cytochromů (enzymů důležitých ke tvorbě energie), má uklidňující efekt, vzniká z něj glukagon, který stimuluje tvorbu glykogenu, jedna ze složek při tvorbě kreatinu. |
L-Fenylalanin | 2267 mg | 680,1 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Glutamin | 13750 mg | 4125 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
L-Histidin | 1454 mg | 436,2 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4684 mg | 1405,2 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
L-Leucin | 7914 mg | 2374,2 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4175 mg | 1252,5 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3526 mg | 1057,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 5043 mg | 1512,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 7087 mg | 2126,1 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1638 mg | 491,4 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1089 mg | 326,7 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 1874 mg | 562,2 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4277 mg | 1283,1 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
Počet dávek v balení | 75 |
Udává počet jednotlivých dávek výrobku v balení. |
---|---|---|
Celková hmotnost včetně obalu | 2300 g |
Udává celkovou hmotnost výrobku včetně jeho obalu. |
Hromadné balení | 1 ks |
Udává počet kusů (kartonové množství) výrobku v hromadném balení (v kartonu) |
Sazba DPH | 12 % | |
Adresa výrobce: EXTRIFIT s.r.o. Dolní Újezd 672, 56961 Dolní Újezd , ČR |
||
Uvádí na trh: EXTRIFIT s.r.o. Dolní Újezd 672, 56961 Dolní Újezd , ČR |
čokoláda kokos | 57,22 Kč / 100 g |
---|
771 | Kč |
1 099 | Kč |
1 399 | Kč |
Ke zboží CFM Instant Whey 80 Whey 100! 2270g doza nebyla otevřena žádná diskuze,otázka ani odpověď. Buďte první.
Napište dotaz k produktu, hodnocení nebo recenzi.
Změna popisu a složení zboží, fotografií a cen vyhrazena. Etiketa výrobku a jeho balení se může lišit od zobrazené verze v závislosti na aktuálním balení od výrobce
|